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Abstract 

The quantum mechanical concept of an active translation operation in an external 
magnetic field is discussed, and an integral version of the kinetic momentum compo- 
nents' commutation relations in terms of a generalized imprimitivity system is formu- 
lated. Magnetic charge quantization then follows from a cocyclelike identity in complete 
analogy with Dirac's original derivation. A generalized system of imprimitivity for the 
Dirac monopole is explicitly constructed with no strings attached. 

1. Introduction 

The Dirac quantization condition for a magnetic charge g was originally 
derived (Dirac, 1931) on an intuitive basis. Many authors attempted, in a more 
or less rigorous way, to rederive the Dirac result, but, in our opinion, none of 
these attempts can be considered as satisfactory. In particular, in the papers 
of Goldhaber (1965), Hurst (1968), Peres (1958), and Lipkin et aI. (1969), 
rotational invariance has been exploited, while in the original Dirac derivation 
no such argument was used. The present paper may be considered as an attempt 
at finding what kind of mathematical structure is hidden behind the Dirac ideas. 

In order to describe a charged, spinless particle in an external magnetic 
field B, we introduce a concept of generalized imprimitivity system (GIS) 
associated with B. Then we show that the Dirac quantization condition is a 
direct consequence of some analyticity and associativity of multiplication 
of Hilbert space operators. Some of our formulas are so closely related to 
those of Dirac's (1931) paper, that it is, in fact, plausible that our approach is 
a refinement of the original Dirac one; however, our language is different. We 
are able to prove that quantization occurs for every finite system of magnetic 
charges, and so has nothing to do with rotational invariance. 

The real goal of  the present paper is a rigorous construction of a GIS corre- 
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sponding to B = gr/r 3 with g = (fic/2e)k, where k is an integer. Our approach 
goes along the lines of Goldhaber (1965) and Lipkin et al. (1969). At the 
present time we can not give a rigorous and general proof of  the uniqueness 
of our construction. 

2. GIS Associated with a Given Field B 

The quantum mechanics of free nonrelativistic elementary systems seems to 
be well understood now, after the work of Bargmann (1951) and Mackey (see 
Mackey, 1968, for a clear review). This is not, however, the case with external 
field problems. When an external field is present and Galilean symmetry is 
broken, we get out of our depth and there remains nothing but to rely on con- 
ventional, well-estabhshed recipes. As has been emphasized by Ekstein (1966), 
it would be desirable to replace these recipes by a set of clear and cogent 
"first principles" one can use as a firm basis when the symmetry breaks down. 
Ekstein (1966, t967, 1969) looks for such principles with the aim of under- 
standing the origin of canonical commutation relations for systems in external 
fields. Indeed, it is one of the fundamental recipes that tells us to start always 
with the variables {qi, P]} satisfying canonical commutation relations. How- 
ever, the meaning of the canonical momenta is rather obscure. While in classi- 
cal mechanics everything can be expressed in terms of fundamental observables, 
coordinates and velocities, and the canonical momentum plays only the role of 
an auxiliary variable, in quantum theory the situation is much more intricate. 
In a magnetic field the velocity components cease to commute and can no 
longer be easily used for identification of states. Moreover, the velocity commu- 
tation relations are not universal, being dependent on the field. On the other 
hand, canonical momenta have been successfully used for description of 
scattering amplitudes and asymptotic states. Presumably, it is just for these 
reasons that Ekstein (1966) attempts to save canonical momentum and give 
to it an operational meaning. 

To our knowledge, nobody has attempted to measure a canonical momentum 
in the framework of classical mechanics, and, after all, one can hardly imagine 
such a measurement without a prior specification of, otherwise arbitrary, 
electromagnetic potentials. What is measured by a ballistic pendulum is not 
a canonical, as suggested by Ekstein (1966), but rather the kinetic momentum. 
We see no reason why in quantum theory the situation should be different. 
The only quantum effect will manifest itself in limitations (fi la Heisenberg) 
related to the kinetic momentum commutation relations, and, as far as arbi- 
trariness of gauge transformations is maintained, one can hardly believe that 
canonical momenta are genuine observables. 

Consider a nonrelativistic, spinless particle in an external magnetic field B. 
According to the conventional, canonical procedure let A be a vector potential 
and {q, p} an irreducible representation of canonical commutation relations. 
The Hamiltonian H is given by 

H = 7r2/2m 
where 

= p - (e/e)A 
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are the kinetic momentum operators: 

=mq 

Let us take x: = q and, t  as fundamental observables. They satisfy a kind of  
generalized canonical commutation relations, namely 

(i) [xi, xj] = o 

(ii) [xi, ~j] = ih6ij 

0ii) [~i, 7rj] = i(eh/c)eijkBk 

The third relation can be easily understood on physical grounds once one 
analyzes the problem of  preparing quantum states in a magnetic field. Let us 
suppose we have an apparatus that produces particles with a small momentum 
dispersion in the absence of  external fields. In order not to disturb the action 
of  the apparatus one may, for example, switch on the field B immediately 
after a particle leaves the machine. However, during the time interval in which 
B grows from zero to its final value, an electric field is necessarily produced, 
and it is easy to see that the spatial extension of  the apparatus makes a dis- 
turbance of different components of  the kinetic momentum unavoidable. The 
result can be seen to be in full agreement with uncertainty relations following 
from Oil). 

Once the relations (i)-(iii) are physically understood, we can try to find a 
satisfactory mathematical theory to handle them. In case of  B = O, one can 
put the canonical commutation relations either in a Weyl form or in some form 
of imprirnitivity system. In the latter approach the basic concepts have a clear 
physical meaning: the spectral measure on the configuration space and the 
unitary representation of  the translation group. Let us therefore introduce 
them in the general case of  B ¢ 0. Let E :S~+E(S) be a spectral measure on 
R a such that 

q i  = f x i  dE(x) 

and let 

Then (ii) is equivalent to 

U(a) = exp [(-i/h)~'a] 

U(a)E(S)U(a)* = E(S + a) (2.1) 

and (iii) takes a form 

U(b)U(a) = U(a + b)M B (a, b) (2.2) 

where M B is a unitary multiplier commuting with E and functionally depen- 
dent on B. Before we start a mathematical discussion of  these relations let us 
try to understand the physical meaning of  the unitary operators U(a). Keeping 
in mind the obscurity of  the notion o f  translational symmetry in an external 
field, one should be very careful when trying to Dve U(a) the meaning of  an 
active transformation. Common sense seems to suggest that to every state 
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there should correspond a definite state ~a that differs from ~ in the position 
probability distribution only, and in nothing else. However, from the uncer- 
tainty relations corresponding to (iii), it follows that in an inhomogeneous 
field the velocity probability distributions of ff and ffa must be, in general, 
necessarily different, and so common sense is misleading in this case. Never- 
theless, one is still inclined to think about an active translation of a state- 
preparing apparatus and look for a corresponding mathematical counterpart. 
Let us analyze this problem in some detail. Classically, during a rigid motion 
of an apparatus each of its points encircles some path l = [z(t) : 0 ~< t ~< T].  
The particle in question will also follow such a path, and so during the motion 
the Lorentz force will change its kinetic momentum by 

T 

0 l 

Thus, we expect, in the quantum case, that the resulting state fit will satisfy 
(in the limit T-> 0, admissible in the nonrelativistic context) 

(¢~, E(S) ~z) = (~,  E(S - a) ¢) 
and 

(~ e I  ) 
(~;,n%)= ,rC-c Bxdz 

where 
a = z ( T )  

In case of /being a straight line: z = x + (tiT)a, we get 
1 

o 

On the other hand, it follows easily from (iii) that 
1 

e f U(a)*~U(a) = ~ + -- a" B(x + sa) ds 
c 

0 

Thus U(a) can be thought of as implementing an active translation of states 
along a straight line. A general translation U(/) can be defined by an approxi- 
mation of l by broken lines {al . . . .  an} and an approximation of U(l) by 
U(an) " " • U(at). It should be noticed that our paths are free paths, i.e., paths 
in the translation group rather than in configuration space. 

Having in mind the above physical interpretation of U(a), one can start 
calculating the multiplier M B. Assuming analyticity enough to make all 
series and differentiations convergent (i.e., a common dense set of analytic 
vectors for lrrs, or something like that), one arrives at the following expression: 

MB(a , b) = f mR(a, b; x) dE (x) (2.3) 
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where 

and 

where we use 

mB(a, b; x) = exp [igPB(a, b; x)] 

e 
qbB(a , b; x) = hc  f 5 B" n(a, b) d2~ 

x + s(a, b) 

s(a, b) = {ta + t'(a + b) : t, t' >1 O, t + t '  ~< 1} 

A general covariant version has the following form: 

V(12)V(ll J -.- U(12 ol I ) 

and 

(2.4) 

(2.5) 

U(l) exp[ ie ) = - -  [ [ B "n d E  (2 .6 )  
Ihc a a 

x+s(0 

for a loop l. 
The above considerations lead us to the following definition: 
Definition 2.1. Let B: R 3 ~ R 3 be a real vector field on R 3 such that for 

every pair a, b E R a the function B • n is integrable over x + s(a, b) for almost 
all x, where s(a, b) is given by (2.6). Let ¢~B and m B be as in (2.3)-(2.5) and 
¢;B = 0 for a and b collinear. A generalized imprimitivity system associated 
with B is a triple ( .~ ,  E, U), whree E is a spectral measure on R 3 in the Hilbert 
space ~ a n d  a ~+U(a) is a Borel function from R 3 into the unitary group of 
j t  a such that 

(p) U(a)E(S) U(a)* = E(S + a) 

(pp) U(b)U(a) = U(b + a)MB(a, b) 

where 

(ppp) MB(a, b) = f mB(a, b; x) dE (x) 

Remark 1. Since MB(a, --a)= 1 it follows that U(a)* = U(-a) .  Moreover, 
for each a, s~+U(sa) is a one-parameter Boret group of  unitary operators, and 
so the self-adjoint generators rr(a): = i hdU(sa)/dsls=o exist. It is easy to see 
that, on an appropriate domain, (iii) is satisfied. 

Remark 2. For a constant B we simply get 

U ( b ) U ( a ) = e x p { -  i ( ~ c ) B - [ a x b ] }  U ( a + b )  

i.e., a usual projective representation of  the additive group of R 3. Every multi- 
plier is equivalent to the above one (see Bargmann, 1951; also Bacry et al., 
1970. 
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Lemma 2.1. Let (at{, E, U) be as GIS associated with B. Then 
E(S) =0 if and only i fS  is of Lebesgue measure zero. 

Proof. The proof follows immediately from spectral multiplicity theory 
(see Halmos, 1957; also Varadarajan, 1970), (lop), and uniqueness of the trans- 
lation invariant Borel measure on R 3. [] 

Theorem 2.1. A necessary condition for a GIS associated with B to 
exist is that, for every triple of linearly independent vectors (a, b, e}, 

~B(a, b, c; x) = 2nk(a, b, c; x) 

x-a lmost  everywhere, where q5 B stands for the integral of the two-form 
B over the boundary of the three-simplex x + s(a, b, c), and 

s(a, b, e) = {q a + t : (a  + b) + ta(a + b + e): 

ti>~O,q +t2 +t3 ~<1} 

with the exterior orientation. 

Proof  With {a, b, c } as above let L: = U(a + b + e)*U(c)U(b)U(a). Since 
U(b)U(a) = U(a + b)M(a, b) and U(c)U(a + b) = U(a + b + c)M(a + b, c), it 
follows that L = M(a + b, c)M(a, b). On the other hand, since 

L* = U@a)U(-b)U(-c)U(a + b + c), U( -b )U( -c )  = U ( - b - c ) M ( - c ,  - b )  

and 

U ( - a ) U ( - b - c )  = U ( - a - b - c ) M ( - b - c , - a ) ,  

it follows that 

L* = U(a + b + c )*M(-b -c ,  - a ) M ( - c ,  -b)U(a  + b + c) 

Now, LL * = I leads to 

M(a + b, c)M(a, b)U(a + b + c )*M(-b-c ,  - a ) M ( - c ,  -b )U(a  + b + c) = I 

and it follows from Definition 2.1 (p), and (ppp)that 

m(a + b, c; x)m(a, b; x ) m ( - b - c ,  - a ;  x + a + b + c ) m ( - c ,  - b ,  x + a + b + c)  = 1 

x-aImost  everywhere, owing to Lemma 2.1. The statement in Theorem 2.1. 
follows now from (2.4) and (2.5). [] 

Corollary'. Let {an} be a sequence of vectors such that El~ lan t z is 
convergent, and let (k n} be a sequence of real numbers such that 
Y~kn/lan 12 is convergent. Let 

B(x): = he/2e ~kn(x - an)/l x - a n I a 

A necessary condition for a GIS associated with B to exist is that k n 

is an integer for each n. 



MAGNETIC CHARGE QUANTIZATION 189 

Proof. Since (an) has no limit points in R 3 , it follows that for each simplex 
s(a, b, c) there is only a finite number of  an's contained in it. The statement 
follows then from Theorem 2.1.[3 

The field B = gx/I x [ 3 describes a magnetic charge g placed at the origin. 
We have seen that quantization of magnetic charge is a direct consequence of 
associativity and has nothing to do with the rotation group. For a value of an 
elementary charge we get g = hc/2e,  as in the paper of  Dirac (1931). In Sec. 3 
it wit1 be shown that g = hc/2e is also a sufficient condition for the existence 
of a GIS associated with B = gx/I  x [ 3. 

3. GIS for  the Dirac Monopole 

In this section we shall describe a generalized system of  imprimitivity corre- 
sponding to the elementary magnetic charge placed at the origin. In this case, 
owing to rotational symmetry,  one can expect that there should be a unitary 
representation of  SU(2 ),A~-+ U(A ) such that  U(A )E(S)U(A )* = E(R A S ) and 
U(A)U(a)U(A)* = U(RA a). We shall see that this is indeed the case. Our con- 
struction may be viewed as a refinement of  the methods of  Goldhaber (1965) 
and Lipkin et al. (1969). On the other hand, there is a formal similarity be- 
tween the commutat ion relations (iii) (Sec. 2), for B as above, and commutat ion 
relations for the components of  the photon position operator with g correspon- 
ding to helicity (see Schwinger, 1970, Chap. 1., Sec. 3). This observation, to- 
gether with the explicit construction of  photon position operator in Jadczyk 
and Jancewicz (1973) may be considered as a motivation of  the foregoing 
construction. Finally, it is worthwhile noting that we deal here with a mani- 
festation of the general phenomenon that a projective representation comes 
from a projection of  a true representation (Jadczyk, 1973). 

Construction. Let K: = C 2s+1 and H: = L2(R 3, K, dax). Let S = (Sa, Sz, $3) 
be a triple of  self-adjoint generators of  an irreducible unitary representation 
W: AC-+W(A) of  SU(2) in K. Thus [Si, S]] = i~lei]kS k and S 2 = h2s(s + 1). 

For a bounded Borel function w: R 3 -~ L(K) let # stands for a unique 
bounded operator in H such that (~f ) (x)  = w(x)f(x),  x - a l m o s t  everywhere. 
We note that wv = w" v and (w*) = (if)*. In particular, if  w(x) is almost 
everywhere self-adjoint (unitary), then # is self-adjoint (unitary. 

For every x, x ~ 0 let 

g(x): = ( -c /e )S"  x / Ix [  (3.1) 

It  is clear that  g: (R 3 - 0) + L ( K )  is bounded and self-adjoint. Let G: =~. 
Then G is a bounded, self-adjoint operator in H. It is easy to see that  G is 
unitarily equivalent to ( - c / e ) S  3 ( w e  do not distinguish between a constant 
function and its value), and so the spectrum of  G consists of  the 2s + 1 points: 
g = - m h c / e ,  m = ( - s , . . . ,  s - 1, s). We call G a magnetic charge operator. 
Under a hypothesis of  a superselection rule for the magnetic charge, every" 
observable should commute  with G. Clearly, in order to describe the Dirac 
monopole,  it is enough to take the case o f s  = 1/2. The Hilbert space H i s  then 
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a direct sum of two subspaces corresponding to the opposite signs of  the charge 
g =hc/2e. 

We proceed to define a GIS in H. The spectral measure E is defined in a 
canonical way: given a Bore1 set S C R 3, let I s be the characteristic function of  
S; then 

[E(S)f] (x): = Is(x)f(x ) (3.2) 

Clearly, for each bounded function w: R 3 -+ L(K), the operator ~ commutes 
with E ( ) .  In particular, if for each A E SU(2) we define 

[U(A)f] (x): = [V(R A )W(A)f] (x) (3.3) 

where 

then 

[V(R)fl (x): = f ( R - l x )  (3.4) 

+ fla" [a x x l / l a  x xl)(I  x l l x  + a l - x  2 + a .  x) 1/2 } 

where ai are the Pauli matrices. Clearly, x~*w(a;  x) is almost everywhere 
defined, and a unitary function from R 3 into L(K) (we specify K to be C 2 
from this time on; a general case can be treated in a similar way). Let 

W(a): = w(a; ")7 (a ~ 0) 
(3.7) 

w(0) :  = z 

From the very construction, a~+W(a) is a Borel function with values in the 
unitary group of  H, and W(a) commutes with the spectral measure E for all a. 
Let 

U(a): = V(a)W(a) (3.8) 

with 

[V(a)f] (x): = f ( x  - a) (3.9) 

(3.6) 

U(A ~(S)U(A )-1 = E(R A S) (3.5) 

and A ~- U(A) is a continuous unitary representation of  SU(2) in H. We also 
observe that E and U(A) commute  with the magnetic charge operator G. The 
generators Ji of  the representation A~-~U(A), as well as the coordinates 

q, = f xi dE(x) 

thus remain self-adjoint when restricted to a subspace with a definite value 
of G. 

To define the map a v--~U(a), let a be a fixed nonzero vector and x 4= ra for 
all r E R. Let 

w(a; x): = 21x] I x + a [  -1/2 ( ( I x l l x  + al + x  2 + a ' x )  1/2 
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Thena  ~-U(a)  is a Borel function and 

U(a)E(S)U(a)-I = E(S + a) (3.10) 

Lernma 3.1. For all a the relation U(a)GU(a) -1 = G holds. 

Proof It can be verified that 

w(a; x)g(x)w(a; x)* = g(x + a) 

for almost all x. Therefore, by (3.7)-(3.9) we have 

W(a)GW(a)* = V(a)*GV(a) 

which is equivalent to the statement of  the Lemma. [] 

Lemma 3.2. For each a, the map t~-*U(ta) is a one-parameter Borel 
group of  unitary operators (and so is strongly continuous). 

Proof. By a direct inspection it can be seen that a cocyclelike relation 

w(ta; x + sa)w(sa; x) = w((s + t)a; x) 

holds for all x for which the both sides are defined, i.e., almost everywhere. 

This is enough to imply 

U(ta)U(sa) = U((t + s)a) [] 

Lemma 3.3. For all A ESU(2)  and a @ R 3 , the relation 

U(A)U(a)U(A)* = U(R A a) 

holds. 

Proof. We have 

U(A )U(a)U(A )* = V(RA)W(A ) V(a) W(a) W(A )* V(RA)* 

= V(R A) IT(a) V(RA)* V(RA)W(A) W(a)W(A )* V(RA)* = V(R A a)W(RA a) 

= U(RAa ) 

where use has been made of  (3.3)-(3.9). [] 
It follows from Lemma 3.2 that there exist self-adjoint generators 7r(a): = 

ihdU(ta)/dtl t=o- On an appropriate domain they are given by 

7r(a) : p" a + (Is x x]"  a)/x 2 

where Pi are the generators of  a ~+ V(a). According to Lemma 3.1 the kinetic 
momenta  ~'i are observables, and according to Lemma 3.3 they transform as a 
vector under rotations. Clearly, by (3.10), they satisfy [qi, 7r] ] = ih6ij, and 
their commutator ,  when calculated, is given by 

rcx rc = i(eh/c)B 
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where 

B: = Gx/ l  x l 3 

is the magnetic field operator corresponding to the Dirac monopole. 

Remark.  Clearly, the absence of strings and a complete covariance of the 
above approach is a consequence of working in the Hilbert space H which 
contains charges of opposite signs. There is no manifest covariance in a heli- 
city representation of photon states. A similar phenomenon occurs in our 
case. 
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